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We study steady-state charge transfer across an interacting resonance-level model connected asymmetrically
to two leads. For a linear energy dispersion relation of the leads, we calculate current-voltage characteristics of
the model exactly employing the scattering Bethe ansatz of Mehta-Andrei and find symmetric transport show-
ing the absence of diode effect. Next we study a lattice version of this model with a nonlinear dispersion for
the leads using the Lippmann-Schwinger scattering theory. We find that the inclusion of nonlinearity in the
leads’ dispersion causes rectification for asymmetric junctions but does not rectify for asymmetric interactions
and perfect junctions. The model in the latter case can be mapped into a model of a single noninteracting
electron in higher dimensions.
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I. INTRODUCTION

Rectification is considered as current asymmetry for the
forward and the reverse bias. In the past years, rectification
in nanoscale coherent systems has got a lot of interest. Cur-
rent rectification by single asymmetric organic molecules has
been predicted1 and realized experimentally.2,3 There are also
several theoretical and experimental studies of charge4,5 and
spin6 rectification in different mesoscopic semiconductor
heterostructures. The future application of modern molecular
electronics largely depends on the high-quality molecular
rectifiers. Thus one needs to understand the basic mechanism
of rectification by molecules, i.e., what are the necessary and
sufficient conditions such that molecular junctions act as rec-
tifier? The mechanism of rectification by molecules is highly
debated.7–10

The mechanism of current rectification in the original
semiconductor p-n junction diodes or the Schottky diodes
consisting of metal-semiconductor junction is a mismatch of
band structures which creates a potential barrier that blocks
the motion of carriers in one direction while allowing them
to flow in the opposite direction. In fact, there are also mi-
croscopic studies in the recent past along this direction with
different hybrid structures showing charge and thermal en-
ergy rectification. But one finds current asymmetry in mo-
lecular junctions or nanostructures even for similar types of
electrodes. Spatial asymmetry and nonlinear interaction be-
tween carriers are regarded as the necessary conditions for
charge rectification in these systems but it is still not clear
what are the sufficient conditions for rectification.11 Quan-
tum impurities are the simplest models for molecules or
nanoscale heterostructures. Here we examine charge trans-
port in a quantum impurity, namely, interacting resonance-
level model �IRLM� connected asymmetrically to two leads.
The equilibrium physics of the IRLM is well studied,12 and
recently the nonequilibrium transport in the IRLM has been
received a lot of interest.13–16 We employ linear and nonlin-
ear energy dispersion of the leads. Surprisingly we find sym-
metric charge transport in the IRLM for linear dispersion of
the leads even with different tunneling junctions within the
scattering Bethe-ansatz approach of Mehta and Andrei
�MA�.13 The inclusion of nonlinearity in the leads’ dispersion

causes rectification for asymmetric junctions but does not
cause rectification for asymmetric interactions and perfectly
transmitting junctions. Our model in the latter case can be
viewed as a single noninteracting electron in the presence of
elastic barriers in higher dimensions.

Rectification in asymmetric impurities is essentially a
nonlinear transport phenomenon. Study of charge transfer
across out-of-equilibrium quantum impurities has attracted
much attention theoretically13–20 as well as experimentally21

for quite some time. The nonequilibrium steady-state prop-
erties of quantum impurities can be investigated within the
time-independent scattering approach. Recently MA �Ref.
13� have developed a nonperturbative framework generaliz-
ing the equilibrium Bethe ansatz to compute steady-state
properties of an IRLM connected symmetrically to left and
right leads with a finite chemical-potential difference. They
have employed a linear energy dispersion relation for the
leads which is necessary for the application of the Bethe
ansatz in their technique. Here first we apply the scattering
Bethe-ansatz framework to derive an exact expression for the
charge current through the IRLM connected asymmetrically
to the two leads with linear energy dispersion. For nonlinear
dispersion of the leads, one can use different theoretical tech-
niques such as the nonequilibrium Green’s-function
formalism17 or the ab initio first-principles calculations.10

One needs to make many approximations to apply these
techniques for any interacting model, thus practically it is not
possible to derive nonlinear transport in lattice models ex-
actly. Recently we have studied nonequilibrium charge trans-
port in quantum impurities with sinusoidal dispersion of the
leads using the Lippmann-Schwinger �LS� scattering
theory.19,20 We here employ that method to study charge
transfer in a lattice version of the IRLM with nonlinear dis-
persion of the leads and asymmetric junctions or interactions.
Our purpose in this paper is also to facilitate a critical dis-
cussion on the above two methods investigating nonlinear
transport in interacting quantum impurities.

II. SCATTERING BETHE ANSATZ
FOR LINEAR DISPERSION

The IRLM consists of a resonant level of energy �d con-
nected to two leads via tunneling junctions of strengths t1
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and t2 and Coulomb interaction U between the level and the
leads. Then we apply standard manipulations for impurity
models where we keep only the s angular modes around the
impurity and linearize the bath spectrum around the Fermi
energies. The Hamiltonian of the system as chiral 1−d field
theories is given by

H = − i �
�=1,2

� dx��
†�x� � ���x� + �dd†d +

1
�2

�t1�1
†�0�d

+ t2�2
†�0�d + H.c.� + U �

�=1,2
��

†�0����0�d†d , �1�

where we need to introduce a cutoff �bandwidth D� to make
the model finite in the renormalized theory. Also we need to
take same Fermi velocity for the both leads which we set to
unity here. The current operator in this model is defined as
I= i�t1�1

†�0�d− t2�2
†�0�d−H.c.� / �2�2�. Once we compute the

many-particle scattering eigenstate ��	s for the asymmetric
model, we can determine the steady-state current between
the two leads by taking expectation of I in ��	s,


I	 =

��I��	s


���	s
. �2�

Now we transform the field operators �1�x� and �2�x� of
the two leads to a new set of even and odd field operators
�e�x� and �o�x� using �1�x�= �t1�e�x�+ t2�o�x�� /�t1

2+ t2
2

and �2�x�= �t2�e�x�− t1�o�x�� /�t1
2+ t2

2. Under the transforma-
tion, the Hamiltonian in Eq. �1� is decomposed into two parts
of the even and the odd field operators,

H = He + Ho �3�

with

He = − i� dx�e
†�x� � �e�x� + t��e

†�0�d + d†�e�0�� + �dd†d

+ U�e
†�0��e�0�d†d ,

Ho = − i� dx�o
†�x� � �o�x� + U�o

†�0��o�0�d†d

with t=��t1
2+ t2

2� /2. Then the Hamiltonian in Eq. �3� is ex-
actly similar in the form of the Hamiltonian obtained by MA
in their symmetric IRLM study after the transformation to a
symmetric/antisymmetric basis. Thus the steps from here to
evaluate the current are quite similar to that of Ref. 13. First
we calculate single-particle scattering states for the different
boundary conditions �i.e., incoming electron from different
leads� by solving the single-particle Schrödinger equation
�here we have incorporated discontinuities at x=0 following
MA�. We define the single-particle scattering states �1, p	 for
those with an incoming particle from lead 1,

�1,p	 =� dxeipx� 1

1 + ei�p
��2��− x� +

t2
2 + t1

2ei�p

t2 �1
†�x�

+ �ei�p − 1�
t1t2

t2 ��x��2
†�x�� +

ept1

�2t
��x�d†�0	 ,

where �p=2 arctan�t2 /2�p−�d�� and ep= t / �p−�d�. We get
the state �2, p	 �those with an incoming particle from lead 2�
from the state �1, p	 by interchanging simultaneously the
field operators �1

†�x� and �2
†�x� as well as the tunnelings t1

and t2. The many-particle scattering state is constructed from
the single-particle scattering eigenstates using the open
Bethe-ansatz framework.13 For that we have to calculate
two-particle S matrix by finding the two-particle scattering
states for different boundary conditions. The linear disper-
sion in the leads gives the freedom to choose the two-particle
S matrix between all electrons to be the same; this helps to
generalize the construction to many-particle scattering state
��	s. Next one forms a Bethe-ansatz basis of eigenstates for
the noninteracting electrons in the leads. The nonequilibrium
boundary condition �namely, the different chemical poten-
tials of the leads� has been incorporated in incoming par-
ticles’ Bethe-ansatz momenta �pj� in ��	s which are deter-
mined by solving the Bethe-ansatz equations.

Now following the above-stated prescriptions, we evalu-
ate the many-particle scattering state ��	s and the corre-
sponding Bethe-ansatz momenta. Then we use Eq. �2� to find
the steady-state current between the leads. Finally taking the
thermodynamic limit at zero temperature, we get


I	s =� dp��1�p� − �2�p��
�1�2

�p − �d�2 + ��1 + �2�2/4
�4�

with ��= t�
2 /2, where the distribution functions ���p���

=1,2� satisfy following coupled equations:13,22

���p� =
1

2	
��k0

� − p� − �

=1,2

�
−�

k0



K�p,k��
�k�dk

with

K�p,k� =
U

	

��d − k�

�p + k − 2�d�2 +
U2

4
�p − k�2

. �5�

The Bethe momenta p in the lead � are filled from the lower
cutoff �−D� up to k0

� which is derived from

�
−D

�� 1

2	
dp = �

−D

k0
�

���p�dp .

Equation �4� correctly reproduces the result of Refs. 13 and
22 for the symmetric tunneling junctions, i.e., t1= t2. One can
solve the above-coupled equations to find the nonequilibrium
distribution of the Bethe momenta using Wiener-Hopf
method for U→� or numerically for arbitrary U. As the Eq.
�5� determining the distribution functions of the Bethe mo-
menta are independent of the tunneling junctions t1 and t2,
we find from Eq. �4� that current between the leads remains
the same if we interchange the tunneling junctions between
the left and the right leads keeping the chemical potential of
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the leads fixed. Thus the transport is symmetric for the for-
ward and the reverse bias, i.e., for the chemical potentials
��+V ,�� and �� ,�+V�, where V is the bias �we have set
charge as unity everywhere�. It shows that there is no diode
effect or rectification in the current-voltage characteristics of
this model even in the presence of the spatial asymmetry and
the nonlinear interaction between electrons.

III. LIPPMANN-SCHWINGER SCATTERING
THEORY FOR NONLINEAR DISPERSION

At this point, the obvious question comes to our mind;
what happens with the inclusion of nonlinearity in the dis-
persion relation of the leads? As we have discussed before,
we study the transport problem for nonlinear dispersion us-
ing the LS scattering approach.19,20 We here consider a lattice
version of the IRLM; the Hamiltonian is given by

H = H0 + V ,

where

H0 = − �
x=−�

�

��cx
†cx+1 + cx+1

† cx� + �dn0 − �t1c−1
† c0 + t2c0

†c1 + H.c.�

and

V = U1n−1n0 + U2n0n1, �6�

where nx=cx
†cx is the number operator at site x. �� denotes

omission of x=−1,0 from the summation. The Hamiltonian
in Eq. �6� describes a resonant level of energy �d at site 0
being coupled with two noninteracting leads of spinless elec-
trons modeled by one-dimensional tight-binding lattice. We
set the lattice spacing and  to 1. Also we have taken an
arbitrary strength for the tunneling junctions as well as the
interaction between the resonant level and the left/right
leads.

The energy dispersion of a single particle with wave num-
ber k is given by Ek=−2 cos k, where −	�k�	. The wave
function �k�x� for a particle incident on the resonant level
from the left �with 0�k�	� or from the right �with −	
�k�0� can be found in terms of the tunneling t1, t2, and �d.
The transmission probability �tk�2 turns out to be the same for
wave numbers k and −k. We will find later that the two-
particle current may not have this symmetry as a result of the
interactions. We can determine the two-particle energy eigen-
state for this model exactly.19,20 The noninteracting two-
particle energies and wave functions of H0 are given by Ek
=Ek1

+Ek2
and �k�x�=�k1

�x1��k2
�x2�−�k1

�x2��k2
�x1�, where

k= �k1 ,k2� and x= �x1 ,x2�. A scattering eigenstate �in the po-
sition basis� of the total Hamiltonian H is given by the LS
equation

�k�x� = �k�x� + U1KEk
� �x��k�− 1,0� + U2KEk

�x��k�0,1� ,

�7�

where KEk
� �x�= 
x�G0

+�Ek��−1,0	 and KEk
�x�= 
x�G0

+�Ek��0,1	
with G0

+�Ek�=1 / �Ek−H0+ i��. The subscript k in the full
scattering state �k�x� in Eq. �7� denotes the momenta of the
incoming electrons. The momenta �k1� ,k2�� of the scattered

electrons can be quite different from the incident momenta
�k1 ,k2� but must satisfy the total-energy conservation after
elastic scattering which is given by cos k1+cos k2=cos k1�
+cos k2�. Now it is easy to prove the following properties
from the above definitions, KEk

� �−1,0�=KEk
�0,1�=K0 �say�

and KEk
� �0,1�=KEk

�−1,0�=K1 �say�. Then �k�−1,0� and
�k�0,1� in Eq. �7� are found in terms of these matrix ele-
ments,

�k�− 1,0� =
K1U2�k�0,1� + �1 − U2K0��k�− 1,0�

1 − �U1 + U2�K0 + U1U2�K0
2 − K1

2�
,

�k�0,1� =
K1U1�k�− 1,0� + �1 − U1K0��k�0,1�

1 − �U1 + U2�K0 + U1U2�K0
2 − K1

2�
.

Thus the two-particle scattering states are determined fully
using the above �k�−1,0� and �k�0,1� in Eq. �7�. The many-
particle scattering states for the nonlinear dispersion of the
leads can be calculated within a two-particle scattering ap-
proximation. This is surely a perturbative approach for many
particles but it can be justified for weak interaction and/or
weak tunneling with lower density of electrons in the leads.

Now we calculate the steady-state current in this model at
zero temperature. The current operator on the leads is defined
by jx=−i�cx

†cx+1−cx+1
† cx�. First we find two-particle current

j�k1 ,k2� by taking expectation value of jx in the two-particle
scattering state ��k	= ��k	+ �Sk	 �from Eq. �7��. j�k1 ,k2�= jI
+ jC+ jS, where current in the incident state is jI= 
�k�jx��k	
=2N�sin k1�tk1

�2+sin k2�tk2
�2�, and the contribution from the

scattered wave functions are jC= 
�k�jx�Sk	+ 
Sk�jx��k	 and
jS= 
Sk�jx�Sk	. The normalization factor N in jI will disappear
in the many-particle current. We calculate the change in two-
particle current, �j�k1 ,k2�= jC+ jS numerically. We find that
�j�k1 ,k2��−�j�−k1 ,−k2� if t1� t2 even for U1=U2. This im-
plies that the two-particle current change due to the interac-
tion is quite different for the particles incident from the left
as compare to the right even at the same energy. We have
seen similar asymmetry in Ref. 20 for another impurity
model. This asymmetry in the two-particle current in the
presence of interactions and asymmetric junctions is the rea-
son for rectification in the many-particle current, and the
amount of rectification will be larger with increasing two-
particle current asymmetry. So in Fig. 1, we plot the ratio
�j�−k1 ,−k2� /�j�k1 ,k2� versus the energy of two incident
electrons for the asymmetric junctions and different values of
U1 and U2. There is a large asymmetry in the two-particle
current for a value of �d corresponding to a two-particle
resonance.20 Now we evaluate the many-particle current,
j= jI+�j. First we take the chemical potential of the left
and the right lead, respectively, �L=−2 cos �k0+�k� and
�R=−2 cos�k0� with bias V=�L−�R. Here k0+�k�−k0� is
the highest occupied wave number of the left �right� lead.
In the thermodynamic limit, the noninteracting current, jI

=�−k0

k0+�k�dk /2	�2 sin k�tk�2 remains the same in magnitude
when we reverse the bias. Thus we just need to find the
many-particle current change �j due to interactions to see
rectification. Within the two-particle scattering approxima-
tion, �j is given by
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�j = �
k0

k0+�k ��
−k0

k0

+
1

2
�

k0

k0+�k dk1dk2

�2	�2 �j�k1,k2� . �8�

We can write a similar expression for the �j with the reverse
bias, i.e., k0 �−�k0+�k�� is the highest occupied wave number
of the left �right� lead. It can be checked that the many-
particle current change will be asymmetric, i.e., �j�V��
−�j�−V�, in the presence of the two-particle current asymme-
try by inspecting the �j for the forward and the reverse bias.
Thus we find here that an interacting quantum impurity acts
as a rectifier for asymmetric coupling to the leads with non-
linear energy dispersion.

Finally we simplify the lattice model in Eq. �6� by con-
sidering t1= t2=1 and �d=0 which corresponds to a perfectly
transmitting impurity in the absence of interaction. Now the
single-particle state �k�x�=eikx and K0, K1 are explicitly
given by two-dimensional lattice Green’s function gEk

+ �x�.
K0=gEk

+ �0,0�−gEk

+ �−1,1� and K1=gEk

+ �−1,−1�−gEk

+ �−2,0�,
where gEk

+ �x� can be found in terms of the complete elliptic
integrals.23 The two-particle current change in this simplified
model has been derived analytically for arbitrary values of
the U1 and U2. Though the total current change �j�k1 ,k2�
is same for the left/right lead but jC and jS separately are
different in the different leads. For k1 ,k2�0, jC�x�0�=2�
and jC�x�0�=0; for k1, k2�0, jC�x�0�=0 and jC�x�0�
=−2�; and for k1, k2 opposite signs, jC�x�0�=� and
jC�x�0�=−�, where

� = 2 Im�U1�k�− 1,0��k
��− 1,0� + U2�k�0,1��k

��0,1�� . �9�

Similarly we find for k1, k2�0,

jS�x � 0� = − 2�U1
2��k�− 1,0��2 + U2

2��k�0,1��2�Im�K0�

+ U1U2 Im��
−	

	

dq1���2eiq1+2iQ − e3iQ − e2iq1+iQ�
4	 sin2 Q

+
���2e−iq1 − e−iQ − e−2iq1+iQ�

4	 sin2 Q
� , �10�

where �=�k�−1,0��k
��0,1� and Ek−Eq1

=−2 cos Q. While
jS�x�0� is given by Eq. �10� with Q being replaced by −Q
and the sign of the coefficient of Im�K0� being positive. In-
terestingly now we find �j�k1 ,k2�=−�j�−k1 ,−k2� for arbi-
trary values of U1 and U2. Also �j�k1 ,k2�=0 for opposite
signs of k1 and k2. So there is no rectification in the simpli-
fied version within the two-particle scattering approximation.
The simplified model with two electrons can be mapped into
a model of a noninteracting electron in two dimensions with
two impurity sites of strength U1 and U2 at �−1,0� and �0, 1�.
Similarly for three electrons the model can be viewed as a
problem of a single electron in three dimensions with impu-
rity sites of strength U1 and U2 being placed on two infinite
parallel lines, and this mapping can be extended for N elec-
trons. It seems that there will not be any rectification in this
simplified version even beyond the two-particle scattering
approximation and it can be confirmed by considering three-
particle scattering explicitly.

IV. DISCUSSION

To conclude we find that the IRLM with different tunnel
junctions acts as a rectifier for nonlinear dispersion of the
leads while it cannot rectify for linear dispersion. The IRLM
is integrable by the scattering Bethe ansatz for linear disper-
sion but the Bethe-ansatz technique is not applicable for non-
linear dispersion. The current in Eq. �4� is symmetric with
respect to the bias as the distribution functions in Eq. �5� are
independent of the tunneling junctions. Now the equations in
Eq. �5� are valid only for the energy of the resonance level
��d� being greater than the energy of the upper bounds �k0

1

and k0
2� on the distribution in momenta in both the leads. The

limitation on the validity of Eq. �5� arises from the fact that
the derivation of Eq. �5� does not include the bound-state
contributions coming from the poles of the scattering
matrix.22 In fact, it can be shown explicitly that the two-
particle scattering state and the corresponding two-particle
scattering matrix contain a two-particle bound state which
behaves as an effective single composite particle in transport.
In our study of lattice models using the LS scattering
approach,19,20 we include the contributions from the two-
particle bound states. Thus the symmetric transport in the
IRLM with linear dispersion most probably arises only for
the value of �d which does not include bound states. The
scattering Bethe-ansatz technique of Mehta-Andrei is incom-
plete as it does not capture the contributions from the bound
states.

The Bethe-ansatz momenta �pj� in the scattering Bethe-
ansatz method are determined using periodic boundary con-
ditions in an auxiliary algebraic Bethe-ansatz problem and it
has been claimed that for infinite periodicity these momenta
will coincide with those of the physical systems. But it is not
clear what is the mechanism of dissipation �or exchange of
energy� of the scattered particles in the leads within such an
approach. On the contrary, in the technique used here for the
lattice model, it has been assumed as the original Landauer-
Büttiker �LB� scattering approach that all the dissipation oc-
curs in the reservoirs connected to the leads. One can show
an one-to-one connection between the LS scattering theory

-2 -1.75 -1.5
Two-particle energy

0

5

10

15
δj

(-
k 1,-

k2
)/

δ(
k 1,k

2)

U
1
=0.5, U

2
=0.5

U
1
=0.5, U

2
=0.2

U
1
=0.2, U

2
=0.5

FIG. 1. �Color online� Plot of the ratio �j�−k1 ,−k2� /�j�k1 ,k2�
versus the energy of two incident electrons for t1=0.2, t2=0.5, and
�d=−0.5. �k2� is kept fixed at 1.2 while �k1� is changed from 0.8 to
1.15.
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and the LB scattering approach. The present technique based
on the LS scattering theory has been successfully applied
to study transport in different interacting mesoscopic
systems.19,20,24 Also the many-particle current within this
technique merges with the current derived from the LB ap-
proach for noninteracting systems.19 Though there is a nu-
merical DMRG study,16 to our best knowledge this is the first
analytical study of nonlinear transport in symmetric/
asymmetric IRLM for nonlinear dispersion.

Recently it has been shown in Ref. 25 that thermal trans-
port is symmetric/asymmetric with respect to temperature
difference in monomode-mediated energy exchange between
two metals for the linear/nonlinear dispersion of the metals.
But in that study the two metallic leads are coupled by a
single harmonic modes, i.e., linear interaction. Here we em-
phasize that in the IRLM due to local nonlinear interaction
particles can exchange energy after scattering. Thus we ex-
pect to find rectification in the IRLM with asymmetric junc-
tions for both the linear and the nonlinear dispersion of the
leads. Finally, we can understand physically the mechanism

behind rectification in the lattice model with asymmetric tun-
neling. Let we consider scattering of two electrons from one
lead to another mediated by nonlinear interactions at impu-
rity site. Two electrons with incident momenta �k1 ,k2� can
scatter into different channels with momenta �k1� ,k2�� satisfy-
ing the total-energy conservation. The asymmetry in tunnel
junctions creates a difference in the redistribution of mo-
menta after scattering from the interactions for electrons
coming from the left or the right leads. Thus we find the
two-particle current asymmetry with asymmetric junctions.
For many particles if a finite bias is applied across the im-
purity then the asymmetry in the redistribution of momenta
persists and that generates the asymmetry in current.
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